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Abstract: A helper data scheme (HDS) is a cryptographic primitive that extracts a high-entropy noise-free secret string
from noisy data. A well-known problem is to ensure that the storage of a user-specific helper data string in
a database does not reveal any information about the secret. Although Zero Leakage Systems (ZSL) have
been proposed, an attacker with a priori knowledge about the enrolled user can still exploit the helper data.
In this paper we introduce diagnostic category leakage (DCL), which quantifies what an attacker can infer
from helper data about, for instance, a particular medical indication of the enrolled user, her gender, etc.
Furthermore, partial or fuzzy knowledge of a medical diagnosis may leak about the secret. We show that the
amount of leakage about (medical) conditions and the secret is non-zero, but typically very small.

1 INTRODUCTION

Biometrics is a convenient and popular solution for
authentication or identification. Nowadays identity
documents such as passports nearly always include
biometric features extracted from fingerprints, faces
or irises. Governments are storing biometric data for
fighting crime and some laptops and smart phones use
biometrics-based user authentication.

In general, biometrics are not strictly secret. Fin-
gerprints can be found on many objects. It is hard to
prevent one’s face or irises from being photographed.
Nonetheless, one does not want to store biometric fea-
tures in an unprotected database since this will make
it easier for an adversary to misuse them.

Storage of the features introduces both security
and privacy risks for the user. Security risks include
the production of fake biometrics from the features,
e.g. rubber fingers (van der Putte and Keuning, 2001;
Matsumoto et al., 2002). These fake biometrics can
be used to leave fake evidence at crime scenes or to
obtain unauthorized access to information or services.

On the other hand there are privacy risks bound
to the application of biometrics. The most sensitive
are: (i) some biometrics are known to reveal diseases
and disorders of the user and (ii) unprotected storage
allows for cross-matching between databases.

Helper data schemes (HDS) (Juels and Watten-

berg, 1999; Linnartz and Tuyls, 2003; Dodis et al.,
2004; Juels and Sudan, 2006; Chen et al., 2007) have
been proposed to ensure that hashes of biometrics can
be stored, such that even during verification no in-
the-clear biometric templates can be retrieved from
a database. These schemes exploit a prover-specific
variable, called the helper data to ensure reliable ex-
act digital reproducibility of a biometric value.

Zero Secrecy Leakage (ZLS) helper data schemes
have been proposed (Verbitskiy et al., 2010; de Groot
and Linnartz, 2011; de Groot and Linnartz, 2012), to
ensue that the mutual information between the helper
data and the secret key is zero. However, it has been
recognized that this property does not fully ensure to-
tal protection of the prover’s privacy.

Ignatenko and Willems (Ignatenko and Willems,
2009) introduced the notion of privacy leakage, de-
fined as the mutual information between helper data
and the biometric value it self as opposed to the helper
data and the secret. Yet we are not aware of any paper
that confirms the severity of the theoretical privacy
leakage in terms of how much valuable information
the attacker actually gets about the prover. If for in-
stance the biometric is the length of a person, many
helper data schemes, such as (de Groot and Linnartz,
2011), leak that the last decimals of the value, for in-
stance are 593, but give no clue about whether it is
an 1.63593 meter small person or 1.93593 meter tall
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person. In this paper we address the question whether
such leakage is serious. For instance if we know from
the helper data of a cyclist that his heart rate is equal
to an unknown integer plus some known fraction, how
much does that tell us about the likelihood of an en-
larged EPO concentration in his blood. In this paper
we analyze such questions.

Another form of key or privacy leakage (de Groot
and Linnartz, 2011) can occur when the attacker has
more a priori knowledge about the prover, or about
any person in the data base. For instance that the cy-
clist is a 28 year old female.

Our current paper has been motivated by an im-
plementation project that records data from epileptic
patients from body sensor networks, with biometric
configuration of the radio links. Here we encountered
the question of how severe such issues are for practi-
cal biometrics.

We perform a security analysis for three impor-
tant scenarios. (i) The case of a mismatch between
the true distribution of the features X and the distribu-
tion used for creating helper data w. The attacker is
assumed to know the true distribution. (ii) An attacker
who has partial information about enrolled users, e.g.
a particular medical indication or gender, and tries to
learn something about the stored secret. (iii) An at-
tacker who tries to learn something about the enrolled
user’s characteristics by exploiting the public helper
data and some a priori partial information about the
user.

These scenarios lead to a mismatch between the
distribution as seen by the attacker and the distribu-
tion used to make W. The question is how much the
ZSL helper data W leaks under these circumstances,
in addition to the already existing leakage. We prove
an upper bound on this additional leakage.

2 ZERO SECRECY LEAKAGE
SCHEME

We consider a commonly accepted verification
scheme which consists of an enrollment and verifi-
cation phase. In the Enrollment phase the prover pro-
vides his biometric data x = (x0, . . . ,xM−1), which the
systems stores safely in the hashed form (h(s‖z),w),
where z is the salt and w is the helper data, which
is generated as w = g(x). In the verification phase
the prover provides his correlated biometric data y =
(y0, . . . ,yM−1) to prove his identity. All variables, ex-
cept for the salt z, are length M vectors extracted by
some means of preprocessing, to ensure that the com-
ponents to be (nearly) independent, but not necessar-
ily identically distributed. Independence can be ob-

tained by for example applying a principle component
analysis (PCA) to the raw data.

Analysis will be carried out per dimension since
we have assumed the features to be independent. In
this case the total leakage in a verification scheme will
be a summation of the leakage per dimension. For
clarity notation of the biometric feature x, secret s and
helper data w will be without subscript i.

Initially, leakage elimination has been studied
(Verbitskiy et al., 2010) for secret values that are
equiprobable (Fuzzy Extractor). Each interval be-
longing to a secret is then subdivided in equiproba-
ble intervals to define the helper data. The helper data
intervals are repeated for each interval of the secrets.
This construction yields helper data whose probabil-
ity is independent of the enrolled secret.

Meanwhile, it has been argued that verification
performance highly depends of effective quantiza-
tion of the analog (continuous valued) biometrics and
continuous-valued helper data within the quantiza-
tion intervals (Linnartz and Tuyls, 2003; Chen et al.,
2007). Also in this domain, leakage is a concern
(de Groot and Linnartz, 2011; de Groot and Linnartz,
2012). Instead of demanding equiprobable discrete
values as helper data, helper data w is defined as a
continuous variable that indicates the relative position
of the enrollment feature x within a quantization in-
terval belonging to a secret s. To achieve ZSL the
scheme has to take into account the probability den-
sity of the features. ZSL is achieved in this case by

s = bN ·FX (x)c, (1)
w = N ·FX (x)− s (2)

in which N is the number of quantization intervals and
FX is the cumulative distribution function (CDF) of
feature x. Note that the number of quantization in-
tervals N does not necessarily have to be a power of
2.

The over construction yields a continuous helper
data w that reveals no information about the enrolled
secret s. In fact one can only reconstruct N possible x
values, each in a different quantization interval. This
reconstruction is given by

xs(w) = F−1
X

(
s+w

N

)
(3)

In this work we will limit ourselves to a leakage
analysis on the continuous scheme only, since the dis-
crete scheme can be considered a special case of the
continuous version.
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3 LEAKAGE ANALYSIS

3.1 Mismatch Between the Real and
Assumed Distribution

The distribution fsys(x) used by the authentication
system is not exactly equal to the real distribution fX
of X . When the system is set up, the statistical knowl-
edge about X is based on a finite number of observa-
tions, from which fsys is derived. Due to finite size
effects a (small) mismatch between fX and fsys arises.
It is prudent to assume that attackers have full knowl-
edge of fX , e.g. due to scientific progress after the
system has been fixed. Given this mismatch, the prob-
abilities for S and W are derived as follows. First of
all we can derive the joint density of the helper data
as secret as

χ(w,s) =
1
N

fX (xs(w))
fsys(xs(w))

(4)

which follows from fX (x)dx = χ(w,s)dw and dx =
dw/[N fsys(x)] evaluated at x = xs(w). The probability
of the secrets follows from integrating fX between the
boundary points that correspond to S = s, hence

χ(s) = P(S = s) = FX (xs(1))−FX (xs(0)). (5)

Finally, the marginal

χ(w) =
1
N

N−1

∑
s=0

fX (xs(w))
fsys(xs(w))

(6)

follows from (4) by summing over s. These probabil-
ity functions can subsequently be used to determine
the leakage

I(S;W ) = ∑
s

1∫
0

χ(s,w) log2
χ(s,w)

χ(s)χ(w)
dw. (7)

An example for such leakage is given in Fig. 1.
This particular example assumes both distributions,
real and assumed, to be Gaussian and the number of
quantization intervals N = 4.

3.2 Related Property Known by
Attacker

There is another source of mismatches. It may happen
that the statistics of the measured quantity X strongly
depends on, e.g. the gender of the enrolled users,
skin color, medical diagnosis, or some other (discrete)
property.

This idea has been motivated by results from a
biometric verification experiment with ECG signals.
The extracted features showed a clear divergence
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Figure 1: Leakage due to mismatch between real distribu-
tion and assumed distribution for N = 4. Only for (µ,σ2) =
(0,1) the leakage is zero.

when sorted by gender. A few striking examples are
depicted in Fig. 2. These features were obtained by
calculating autocorrelation (AC) on 1 minute epochs
and subsequently applying a discrete cosine transform
(DCT) (Agrafioti and Hatzinakos, 2008).

We will consider a general discrete category C ∈
C . We ask ourselves the question whether an attacker
can gain an advantage from some observation C̃ ∈ C
which yields (partial) knowledge about the category
C. One can think of C̃ as an estimate derived from an
observation for a specific person, e.g. gait or height,
or an observation of the whole enrolled population,
e.g. the percentage of men vs. women. For example
the observation could be a 1.9m tall person, which
might give rise to the assumption it is a man, since
men are usually taller than women. However, we
might be dealing with an exceptionally tall woman.

We will investigate two attack scenarios:

1. Secret estimation
The attacker wants to leverage the side informa-
tion to derive a better guess for an enrolled per-
son’s secret S. In this scenario the mutual infor-
mation I(S;W,C̃) is the quantity of interest.

2. Category estimation
Based on the side information, the attacker wants
to diagnose an enrolled person’s category C (med-
ical indication). In fact we generalize this to any
privacy sensitive category including gender, race,
etc. Here the quantity of interest is I(C;W,C̃).

For given c, we have to consider the fX (x) in (4)
to fX |C(x|c). The fX (x) remains unchanged, since the
enrollment is done without regard to categories. Note
that S and W have no additional dependence on C. By
using the joint probability Qcc̃ of c and c̃ and the chain
rule χ(s,w,c, c̃) = Qcc̃ χ(s,w |C = c) we can write

χ(s,w,c, c̃) = Qcc̃
1
N

fX |C(xs(w)|c)
fX (xs(w))

. (8)
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(a) DCT coefficient 2.
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(b) DCT coefficient 4.
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(c) DCT coefficient 5.
Figure 2: Examples of deviating distributions per gender in a ECG based verification experiment.

From (8) we can derive all the marginal distribu-
tions that are necessary for computing I(S;W,C̃) and
I(C;W,C̃). Some examples assuming Gaussian distri-
butions are depicted in Fig. 3(a) and Fig. 4(a).

3.2.1 Bound on the Secrecy Leakage

We will show that the total amount of information that
can be obtained is very limited. The expression of
the mutual information between enrolled secret s and
public data, i.e. helper data w and category estimate
c̃, can be split in two terms

I(S;W,C̃) = I(S;W )+ I(S;C̃|W ). (9)

Since the scheme is a zero leakage key extraction
scheme, i.e. I(S;W ) = 0, it follows that

I(S;W,C̃) = I(S;C̃|W )≤ H(C̃|W )≤ H(C̃) (10)

Therefore we can conclude that the secrecy leakage
satisfies

I(S;W,C̃)≤ H(C̃) (11)

This bound, which limits the amount of informa-
tion about the secret that can be obtained in a ZSL
scheme, is limited by the entropy in the category esti-
mate and is independent of the public helper data and
the type of ZSL scheme. If an attacker for example
knows the gender of an enrolled user, he can never
learn more than 1 bit even if the secret is more then 1
bit.

4 Toy Example: Gaussian
Distributions

4.1 Secret Estimation

In this section we study the situation that emerges
when an attacker knows C̃, i.e. an estimate of the
category C of the enrolled user. For this particular
example we construct the category as a single bit. For

example “0” is male and “1” is female. The estimate
is derived from the actual category with some error
p, which is modeled as a Binary Symmetric Channel
(BSC) with cross-over probability p. We assume that
a priori both categories are equiprobable, thus

Qcc̃ =

{
1
2 (1− p) c = c̃
1
2 p c 6= c̃

. (12)

For the feature distribution we assume a Gaussian
Mixture Model (GMM) with two distributions, which
represent the two categories. The parameters for this
model are set to σ2

0 = σ2
1 = 1 and −µ0 = µ1 = µ. This

mean value parameter µ ≥ 0 will be varied together
with error probability p to study the emerging leakage
in the system.

To calculate xs(w) in Eq. (8) we need to calculate
the inverse CDF of the Gaussian mixture as given by
Eq. (3). This has been solved by applying Newton’s
method to the given PDF and CDF of the Gaussian
mixture. For arguments smaller than 1/2, µ0 was used
as initial guess and for arguments larger than 1/2, µ1,
which ensured a rapid convergence and accurate re-
sults.

The inverse CDF allows us to calculate the joint
probability density function χ(s,w, c̃) as a function of
w. This marginal is derived from Eq. (8). Subse-
quently we can calculate the secrecy leakage in terms
of mutual information as

I(S;W,C̃) = ∑
s,c̃

1∫
0

χ(s,w, c̃) log2
χ(s,w, c̃)

χ(s)χ(w, c̃)
dw.

(13)
At increasing value of µ we observe a clear satu-

ration for the total leakage I(S;W,C̃). Moreover, the
better the estimate (p→ 0), the more information an
attacker obtains. However, even for µ� 0 and p = 0,
i.e. a perfect category estimate, there is a maximum
leakage of 1 bit, which agrees with the bound found
in Section 3.2.1. The results of this calculation for
different values of p can be found in Fig. 3(a).
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Figure 3: Leakage of secret S in secret estimation scenario.

A distinction can be made between leakage by
a priori knowledge of the category I(S;C̃) irrespec-
tive of the helper data and “bonus” leakage I(S;W |C̃)
caused by the category estimate c̃ combined with
knowledge of the helper data w. So

I(S;W,C̃) = I(S;C̃)+ I(S;W |C̃) (14)

and by doing the numerics for

I(S;W |C̃) = ∑
s,c̃

1∫
0

χ(s,w, c̃) log2
χ(c̃)χ(s,w, c̃)
χ(s, c̃)χ(w, c̃)

dw

(15)
we can assess the amount of leakage actually caused
by the helper data scheme.

In the special case of symmetric distributions and
an even number of quantization intervals (as assumed
in Fig. 3(b)), for µ� 0 it holds that I(S;W |C̃)→ 0.
This effect is caused by the fact that the two cate-
gory distributions become favorably located over the
quantization intervals. However, for more unfortu-
nate choices, e.g. odd N, this favorable effect is not
present, as can be seen in Fig. 3(c).

We conclude that leakage can only be severe for
a pre-informed attacker who has specific a priori
knowledge. However, such a situation closely resem-
bles a situation in which an attacker possesses the bio-
metric feature x itself and not a single ZSL scheme
can protect against such well informed attackers, as
in the limiting case the attacker knows as much as the
verifier.

4.2 Category Estimation

For the scenario that an attacker tries to extract
privacy–sensitive information about a category (e.g
gender, race, epileptic indications, use of certain me-
diation or drugs) to which the prover belongs, we can
obtain similar results. The total information about C

can again be split in a part from the estimate C̃ and a
part caused by the helper data W as follows

I(C;W,C̃) = I(C;C̃)+ I(C;W |C̃). (16)

Most information about the category is obtained from
the category estimate C̃. Since we modeled this es-
timate as a BSC this equals 1− h(p). In this equa-
tion h(p) is the binary entropy function. This effect
can also be seen in Fig. 3(a). The contribution of the
helper data is only partial as confirmed by Fig. 4(b).
Also the convergence to zero for µ� 0 only applies
for even N as can be seen in Fig. 4(c). In this example
we have set p = .5, which effectively removes the a
priori knowledge on C̃.

However, the leakage as show in Fig. 4(b) and
Fig. 4(c) might seems little, but this is a leakage per
dimension. An authentication scheme will in general
use more the one dimension and it is not unlikely that
the category under consideration will have influence
on more than a single dimension, as is also confirmed
in Fig. 2. In case one wishes to determine a binary
quantity, e.g. gender, with high probability this could
be possible by combining the information from all
available dimensions.

5 CONCLUSION

We have studied and quantified two kinds of the
leakage. The first due to a mismatch that can emerge
due to improved understanding of feature distribu-
tions after the system has been set up and the second
if the attacker knows an enrolled user belongs to a
specific category with a specific feature distribution.
We for the latter we distinguished between the leak-
age about the enrolled secret and about the (medical
diagnostic, racial, etc.) category.

From the results we can conclude that most of the
leakage is caused by a priori information and only lit-
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Figure 4: Leakage of category C in category estimation scenario.

tle information is revealed by the helper data. Only
situations in which very specific information is known
to the attacker can cause more serious leakage. We
believe that the Diagnostic Category Leakage (DCL),
which has been introduced in this paper, can serve as
a practical measure for privacy-sensitive leakage of
biometric systems.
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